
Cache Timing Analysis of HC-256

Erik Zenner

Technical University of Denmark
e.zenner@mat.dtu.dk

Abstract. In this paper, we describe an abstract model of cache timing
attacks that can be used for designing ciphers. We then analyse HC-256
under this model, demonstrating a cache timing attack under certain
strong assumptions. From the observations made in our analysis, we
derive a number of design principles for hardening ciphers against cache
timing attacks.

1 Introduction

Cache timing attacks have been introduced in 2005 by Bernstein [1] and Osvik et
al. [7] as a new class of side-channel attacks. The basic idea is that an adversary
can under certain circumstances observe the cache accesses of a legitimate party
by measuring cache timings. As it turns out, the Advanced Encryption Algorithm
(AES) is particularly vulnerable to this kind of attack. In subsequent work, the
initial results were verified and refined, and countermeasures were discussed [3,
6, 2]. Bertoni et al. described how in addition to timing attacks, cache misses
can also be used for power analysis attacks [4].

However, the focus of the cryptanalysis was on the AES, and the counter-
measures mainly targeted the implementation of cryptographic designs. In this
paper, we take a different approach: We discuss how cipher designers can make
such attacks more difficult if appropriate countermeasures on implementation
level are not present. We demonstrate our approach by analysing a different
type of cryptographic primitive, namely the stream cipher HC-256.

1.1 Cache Timing Attacks

Cache timing attacks are a special class of timing attacks. They make use of
the fact that loading data into a CPU register is faster when loading from the
cache than when reading from RAM. By measuring cache timings, an observer
can obtain information about the inner workings of a cipher. In the following,
we give a simplified description of cache timing attacks. For a more precise
description, see e.g. [7, 6].

Cache workings: The CPU cache of modern processors is organised into blocks
of s bytes (for Pentium 4, s = 64). In the same way, RAM is considered to be
(virtually) organised in s-byte blocks. If a piece of data has to be loaded from

memory into a CPU register, the system first checks whether the corresponding
RAM block already lies in cache. If yes, it is loaded directly from cache, which
can be done very fast (cache hit). If not, it is first loaded from RAM to cache,
which takes longer time (cache miss). Mapping from RAM to cache is typically
by a simple modulo operation, i.e. if the cache has size n blocks and if the data
lies in RAM block a, then it is loaded into cache block a mod n. This means that
neighboring data in RAM (e.g. tables) also lies close together in cache.

A simple attack: As a (simplified) example, consider the prime-then-probe
method presented in [7]. The adversary starts by filling all the cache with his
own data. After that, he gives the read/write token to the legitimate user A.
User A loads the data required for his own computations into the cache, where
it evicts the adversary’s data. When the adversary receives the read/write token
again, he tries to load his own data from cache again. For each cache block, if
this takes long, it means that A has evicted the corresponding data.

From this analysis, the adversary obtains a profile of cache blocks that have
been used by A. This profile is a noisy version of the cache blocks that have been
used for the encryption. By repeating the experiment a number of times, a good
approximation of the real cache access profile can be obtained.

Note that the adversary does not learn the data that was written in the cache
by A. But he learns something about the addresses of the data that was used. In
the case of AES, the adversary learns something about the indexes of the S-box
entries used for encryption, which in turn can be used for an attack.

Relevance: Cache timing attacks work only if the adversary is able to make cache
timing measurements of sufficient precision1, and if he can repeat the experiment
sufficiently often. Obviously, these requirements are only rarely met. However,
they seem to be relevant in a shared server setting, and the paper by Bertoni
et al. [4] shows how to use cache misses in an environment where the adversary
has physical access to a device, making the attack much more realistic.

In general, the existence of a cache timing attack against a cipher does not
mean that this cipher is broken in a practical sense and has to be discarded. Oth-
erwise, we would have to start replacing AES. However, cryptographic prudence
dictates that we have to analyse ciphers with regards to all potential attacks.
Until new hardware makes cache timing attacks impossible, implementers have
to make sure that their system prevents cache timing attacks. However, if a ci-
pher has no cache timing vulnerability in the first place, this would obviously
be preferrable. Thus, in this paper, we try to derive some design guidelines that
help avoid cache timing vulnerabilities.

1.2 Selection of cipher

Cache timing attacks are applicable against ciphers that use tables for efficient
implementations. A number of such ciphers can be found in the eStream project
1 Typically, this would be by sharing the same computer, even though Bernstein [1]

uses the example of a server that gives the timings away as part of a timestamp.

[5], which is concerned with the security of stream ciphers. Thus, we decided
to target one of those ciphers for our analysis. Table 1 lists the finalists in
the eStream software category and indicates which ones require large tables for
efficient implementation.

Cipher Tables Select

CryptMT none -

Dragon Two 8x32-bit S-Boxes †
HC-128 Two 9x32-bit tables
HC-256 Two 10x32-bit tables †
LEX-128 One 8x8-bit S-Box (ref. code)

Eight 8x32-bit S-Boxes (opt. code) †
NLS One 8x32-bit S-Box †
Rabbit none -

Salsa-20 none -

Sosemanuk One 8x32-bit, eight 4x4-bit tables (ref. code)
One 8x32-bit table (opt. code) †

Table 1. Candidate ciphers for cache timing analysis

The ciphers that require further analysis are marked with a ’†’. As can be
seen, the designs CryptMT, Rabbit, and Salsa-20 are naturally resistant to cache
timing attacks2. Out of the five remaining ciphers, we selected HC-256 for anal-
ysis in this paper, since it is one of the fastest remaining designs, and since the
large inner state tables make analysis particularly challenging.

2 Attack Model

2.1 Usable Routines

While different methods of conducting a cache timing attack have been proposed
in the literature, they are all based on the effect that calling an encryption routine
has on the cache. In the case of stream ciphers, there are three routines that could
potentially be targeted: key setup, IV setup, and keystream generation3. In this
paper, we will analyse for each of those routines whether it can be used for an
attack.

2.2 Side-channel Information

It is very hard to predict what kind of information the adversary will have
available in a real-world cache-timing attack. Thus, we take the view of a cipher
2 In the particular case of Salsa-20, this is a deliberate design goal.
3 These correspond to the functions ECRYPT keysetup, ECRYPT ivsetup, and
ECRYPT keystream bytes defined in the eStream API.

designer: What happens in the worst case? We assume that the adversary gets
the maximum amount of information that can reasonably be expected, and see
what damage this would do to the cipher. Ciphers designed under such a model
will most likely be secure in practice, too. On the other hand, a break in the
model does not necessarily imply a break in practice. The relevance of the attack
depends on whether or not the strong assumptions of the model are present in
a concrete real-world system or not.

The idealised model: HC-256 uses tables with an entry size of 4 byte. Considering
that the most wide-spread CPUs (such as Pentium 4 and Athlon) currently use
an L1 cache block size of 64 byte, each cache block contains 16 table entries. In
the following, we assume that the tables are aligned with cache blocks4.

For our analysis, we use the prime and probe method proposed in [7] and as
described in section 1.1. In the following, we assume that the adversary gets the
maximum possible information out of the attack, namely a list of all cache blocks
that have been used by the cryptographic function observed. Note that this is a
strong simplification in comparison to the real world, where the adversary only
obtains a list of all cache blocks that have not been used.

The list of cache blocks used gives the adversary information about the ta-
ble entries used. Since each cache block contains 16 table entries, the adverary
obtains the table index with the exception of the least significant 4 bits. Note
that if the cache block size is smaller (larger) than 64 byte, he will obtain more
(less) information about the table entries.

In addition, we assume that for calls to the IV setup function, the adversary
can choose the initialisation vector (IV). For calls to the keystream generation
function, the adversary learns the resulting keystream bits. Again, these assump-
tions are rather strong, but often considered standard in cryptanalytic analysis.

3 Description of HC-256

HC-256 was proposed by Wu in [8]5. The cipher is based on the use of large, key-
based tables (i.e., no fixed S-boxes) that change content over time. With each
call to the keystream generation function, the cipher updates one table entry
and outputs one 32-bit keystream word.

Notation: HC-256 requires a 256-bit key K and a 256-bit IV IV . It uses two
tables P and Q, which contain 1024 32-bit words. Table entries are identified by
P [i] and Q[i].

When dealing with HC-256, ⊕ denotes xor, || concatenation (most significant
bits first), and ≫ a circular right shift. � denotes addition modulo 32, and �
subtraction modulo 10.
4 Otherwise, analysis becomes messier, but also more efficient.
5 A reduced version of the cipher, HC-128, was introduced in [9]. It is not considered

here, even though its working principles are very similar to those of HC-256.

If X is a word, we denote by X(b..a) the bits b..a, where b > a. For all nota-
tions, the most significant bits are written to the left, while the least significant
bits are written to the right. Thus, we can write X = X(31..0).

Auxiliary Functions: The following auxiliary functions on 32-bit variables are
used:

f1(x) = (x ≫ 7)⊕ (x ≫ 18)⊕ (x � 3)
f2(x) = (x ≫ 17)⊕ (x ≫ 19)⊕ (x � 10)

g1(x, y) = ((x ≫ 10)⊕ (y ≫ 23)) � Q[(x⊕ y)(9..0)]
g1(x, y) = ((x ≫ 10)⊕ (y ≫ 23)) � P [(x⊕ y)(9..0)]

h1(x) = Q[00||x(7..0)] � Q[01||x(15..8)] � Q[10||x(23..16)] � Q[11||x(31..24)]
h2(x) = P [00||x(7..0)] � P [01||x(15..8)] � P [10||x(23..16)] � P [11||x(31..24)]

Key/IV Setup: For initialisation (i.e., key and IV setup), the key is split into 8 32-
bit words K[0], . . . ,K[7], and the IV is split into 8 32-bit words IV [0], . . . , IV [7].
With the help of an auxiliary array W [0], . . . ,W [2559] and a global counter
variable r, the algorithm can be described as in Figure 1.

Init(K, IV)
1. For i = 0, . . . , 7:
2. W [i] = K[i]
3. For i = 8, . . . , 15:
4. W [i] = IV [i− 8]
5. For i = 16, . . . , 2559:
6. W [i] = f2(W [i− 2]) � W [i− 7] � f1(W [i− 15]) � W [i− 16] � i
7. For j = 0, . . . , 1023:
8. P [j] = W [j + 512]
9. Q[j] = W [j + 1536]

10. Set r = −4096
10. Repeat 4096 times:
10. Next() (* Ignore the output *)

Fig. 1. Key/IV setup for HC-256

Keystream Generation: The r-th call to the Next() function updates one ta-
ble entry and produces one 32-bit word of output, namely zr. The function is
described in Figure 2. Note that r = 0 for the first output word.

Note that during the attack, we assume that we can access one single iteration
of Next() at a time. This is the usual way of implementing HC-256 in software:
The user can ask for individual words to be encrypted.

Next()
1. Set j = r mod 1024
2. If ((r mod 2048) ∈ {0, . . . , 1023}):
3. P [j] = P [j � 1024] � P [j � 10] � g1(P [j � 3], P [j � 1023])
4. zr = h1(P [j � 12])⊕ P [j]
5. Else:
6. Q[j] = Q[j � 1024] � Q[j � 10] � g2(Q[j � 3], Q[j � 1023])
7. zr = h2(Q[j � 12])⊕Q[j]
8. r = r + 1

Fig. 2. Keystream generation for HC-256

4 Observing One Function Call

4.1 Attacking the Init() Function

The key and IV setup for HC-256 can not be separated in a meaningful way.
Thus, we consider them as one function Init(). Let us now assume that this
Init() function has been executed and that the adversary has learned exactly
which cache blocks have been accessed. As it turns out, a full run of the key/IV
setup invokes each entry of the tables W , Q and T at least once. Thus, in
the attack model used for this paper, the adversary does not obtain any useful
information, since all he learns is that all table entries have been used - something
he knew beforehand anyway6.

4.2 Measuring One Call to the Next() Function

Let the adversary invoke the Next() function exactly once. Since both tables
P and Q have 1024 entries, i.e. table indices are 10 bits long, and since the
adversary learns only the correct cache block, he obtains the 6 most significant
bits of the table index from observing the cache block access.

Now consider a case where (r mod 2048) ∈ {0, . . . , 1023}, i.e. code lines 3
and 4 are executed. The indices of all accesses to table P are fixed and known,
i.e. the adversary does not learn anything new from them. However, in the calls
to functions g1 and h1, table Q is accessed by state-dependent indices. Here, we
observe either 4 or 5 accesses to table Q, as follows.

Function h1: In function h1, table Q is accessed at indices (00||P [j � 12](7..0)),
(01||P [j � 12](15..8)), (10||P [j � 12](23..16)), and (11||P [j � 12](31..24)). While in
general, the adversary does not know which table access belongs to which vari-
able, things are more obvious here. Each of the four 10-bit indices starts with

6 In certain extreme cases, cache timing attacks may allow the adversary to count how
often a given entry has been invoked. Measurements are a lot more difficult, though,
and the amount of noise due to the numerous table accesses will be significant. Thus,
we do not expect those attacks to be successful.

a unique 2-bit prefix and can thus be clearly assigned to one of the four vari-
ables. Thus, if it were not for code line 3, the adversary could immediately
determine the upper half-bytes for P [j � 12] from the cache accesses, i.e. bits
7..4, 15..12, 23..20, and 31..28.

Function g1: However, in the same function call, g1 accesses table Q at index
(P [j�3]⊕P [j�1023])(9..0). This index can have any of the prefixes 00, 01, 10, or
11. Thus, we can not distinguish it from one of the accesses by h1 which has the
same prefix (unless it accidentially uses the same cache block, which happens
with probability 1/16).

Concluding, for three of the four bytes in P [j � 12], we know precisely their
upper halfbyte. For the fourth one, we normally have two candidates, which
we can not distinguish without additional information. In addition, for (P [j �
3]⊕ P [j � 1023]), we know exactly what the bits 9 and 8 are, and we have two
candidate assignments for bits (7..4).

Functions h2 and g2: Note that exactly the same observations hold for table P
for rounds r with (r mod 2048) ∈ {1024, . . . , 2047}.

5 Description of the Full Attack

5.1 Notation

Before considering several calls to the Next() function, we have to define a
unique notation for the table entries. Note that since the table is constantly
updated, we have to make it clear which of a succession of values in e.g. table
cell P [12] we mean.

To this end, for table P , we write Pu when we mean the u-th value that was
updated for this table, where P0 is updated in round r = 0. As an example, table
cell P [12] has the value P−1012 after initialisation, obtains value P12 in round
r = 12 and value P1036 in round r = 2060.

Similarly, for table Q, we write Qu when we mean the u-th value that was
updated for this table, where Q0 is updated in round r = 1024. As an example,
table cell Q[12] has the value Q−1012 after initialisation, obtains value Q12 in
round r = 1036 and value P1036 in round r = 3084.

In Table 2, we describe the relationship between rounds and the sequence
words that are needed for the purpose of this paper.

5.2 First Observations

Now let the adversary observe calls to the function Next() for the following
rounds:

r = 25, . . . , 1023, r = 2048, . . . , 3071, r = 4096, . . . , 5119, r = 6144, . . . , 6176.

Round Table P Table Q

0, . . . , 1023 P0, . . . , P1023 -
1024, . . . , 2047 - Q0, . . . , Q1023

2048, . . . , 3071 P1024, . . . , P2047 -
3072, . . . , 4095 - Q1024, . . . , Q2047

4096, . . . , 5119 P2048, . . . , P3071 -
5120, . . . , 6143 - Q2048, . . . , Q3071

6144, . . . , 7167 P3072, . . . , P4095 -
7168, . . . , 8191 - Q3072, . . . , Q4095

Table 2. Rounds of sequence word update

This way, he observes partial information about table entries as described in
Section 4.2. Using our new notation, we have 2 candidate assignments for each
of the following lines:

From h1 From g1

P
(7..4)
13 P

(15..12)
13 P

(23..20)
13 P

(31..28)
13 P

(9..4)
22 ⊕ P

(9..4)
−998

P
(7..4)
14 P

(15..12)
14 P

(23..20)
14 P

(31..28)
14 P

(9..4)
23 ⊕ P

(9..4)
−997

.

P
(7..4)
3092 P

(15..12)
3092 P

(23..20)
3092 P

(31..28)
3092 P

(9..4)
3101 ⊕ P

(9..4)
2081

In particular, for the equations P1033 ⊕ P13, . . . , P3092 ⊕ P2072, we have 2
candidates for the bits 7..4 from g1. At the same time, from h1, we have 1
candidate (with probability ≈ 3/4) or 2 candidates (with probability ≈ 1/4) for
bits 7..4 of the corresponding values P13, . . . , P3092.

A simple consistency check: We will now try to figure out which of the two
candidates for each g1 equation is the correct one. First note that with probability
1/16 there is really only one candidate for this equation, namely if bits 7..4 are
the same as for h1. If this is not the case, there are three subcases:

1. For the corresponding h1 values, there is only 1 candidate each. In this case
(which happens with prob. ≈ 9/16), checking by xoring those h1 values will
always identify the correct candidate for the g1 value.

2. One of the h1 values has 1 candidate and one has 2 candidates. In this case
(which happens with prob. ≈ 6/16), there is only one wrong combination of
h1 candidates, and it is identical to the wrong g1 candidate with probability
1/16. Thus, the test identifies the wrong g1 candidate with probability 15/16.

3. Both h1 values have 2 candidates. In this case (which happens with prob.
≈ 1/16), there are 3 wrong combinations of h1 candidates. They identify the
wrong g1 candidate with probability 15·15·14

163 .

Concluding, the probability of identifying a wrong g1 candidate by a simple
test is

1
16

+
15
16

·
(

9
16

· 1 +
6
16

·
(

15
16

)
+

1
16

·
(

15 · 15 · 14
163

))
≈ 0.9646.

Conclusions: In the following, we will thus assume that the correct candidates for
equations P1033⊕P13, . . . , P3092⊕P2072 have been identified. In reality, there will
be a small number of such equations that have two candidates, but the percentage
is small enough not to significantly influence the analysis in the following sections
(it will only make an implementation of the attack slightly messier).

If the correct candidates for equations P1033 ⊕ P13, . . . , P3092 ⊕ P2072 are
known, we can also identify the correct candidates for the h1 values of the same
lines. Thus, in the following, we can assume that the upper half-bytes are known
for the h1 values under consideration, i.e. the sequence words P1024, . . . , P3083.

By repeating the same procedure for rounds

r = 1049, . . . , 2047, r = 3072, . . . , 4095, r = 5120, . . . , 6143, r = 7168, . . . , 7188,

the same bits can be determined for sequence words Q1024, . . . , Q3071.

5.3 Reducing the number of candidates

In the following, we will further reduce the number of candidates for Q1024, . . . ,
Q3059 and P2048, . . . , P3071.

Sequence words Q1024, . . . , Q2035: Let us consider the calls to the function

zr = h2(Q[j � 12])⊕Q[j]

that occur in rounds r = 3084, . . . , 4095. They access the sequence words Q1024,
. . . , Q2047 and P1024, . . . , P2047. According to Subsection 5.2, we know all upper
half-bytes for these entries. Now we have to try and learn as much as possible
about the remaining inner state from this information.

Let γ0, . . . , γ3 = (00||Q[j � 12](7..0)), . . . , (11||Q[j � 12](31..24)). Then we can
re-write the above equation as follows:

zr ⊕Q[j] = P [γ0] � P [γ1] � P [γ2] � P [γ3] (1)

Remember that the adversary knows the keystream word zr. Also note that for
Q[j], Q[j � 12] and for all P [γi] involved, we know the upper half-bytes. We will
now proceed by guessing the remaining 16 bits of Q[j � 12] and then verifying
the result by using eq. (1).

If the equation would use ⊕ instead of �, verification would be straightfor-
ward. We would use the upper halfbytes to obtain 16 linear equations in GF(2).
Since we also have to guess 16 bit for Q[j � 12], only one false guess would pass
this test on average.

However, for addition, we have to take carries into account. We end up with
4 verification equations, as follows:

z(7..4)
r ⊕Q[j](7..4) = P [γ0](7..4) � P [γ1](7..4) � P [γ2](7..4) � P [γ3](7..4) � c0

z(15..12)
r ⊕Q[j](15..12) = P [γ0](15..12) � P [γ1](15..12) � P [γ2](15..12) � P [γ3](15..12) � c1

z(23..20)
r ⊕Q[j](23..20) = P [γ0](23..20) � P [γ1](23..20) � P [γ2](23..20) � P [γ3](23..20) � c2

z(31..28)
r ⊕Q[j](31..28) = P [γ0](31..28) � P [γ1](31..28) � P [γ2](31..28) � P [γ3](31..28) � c3

Here, c0, . . . , c3 are the carry values, taken from {0, 1, 2, 3}.
Thus, if we want to use the above equations to verify our guess for Q[j �12],

we have to guess the carry values, too. In total, this gives us 216 · 28 = 224

possible guesses. On the other hand, we have 16 verification bits. This means
that on average, 28 guesses for Q[j � 12] will survive the test. For the table
entries Q1024, . . . , Q2035, we write these guesses into a table.

Sequence words Q2036, . . . , Q3059: It remains to reconstruct the remaining words
Q2036, . . . , Q3059, which can be done in a similar manner by considering rounds
r = 5120, . . . , 6143. These rounds use the sequence words Q2036, . . . , Q3071, as
well as some of the sequence words P2048, . . . , P3071. Using the same technique
as above, we can reduce the number of candidates for Q2036, . . . , Q3059 to ap-
proximately 28 candidates each.

Sequence words P2048, . . . , P3071: The same technique can also be applied to re-
duce the number of candidates for the sequence words P2048, . . . , P3071. We do
this by considering the rounds r = 4108, . . . , 5119, which use sequence words
P2048, . . . , P3071 as well as Q1024, . . . , Q2047. From this, we can reduce the num-
ber of candidates for P2048, . . . , P3071 to 28. Afterwards, we consider rounds
6144, . . . , 6155, which use sequence words P3060, . . . , P3083 as well as some of
the table entries Q2048, . . . , Q3071.

Resulting table: For Q1024, . . . , Q3059 and P2048, . . . , P3071, the surviving candi-
date words are written in a table. The total size of this table is 3060 ·28 ·4 ≈ 32̇20

byte, i.e. 3 MByte.

5.4 A Backtracking Attack

In the next step, we will reduce the number of candidates for Q1024, . . . , Q2047

and P2048, . . . , P3071 to one.

Reconstructing table Q: Consider code line 6 as it is called in round r = 5120.
It has the following form:

Q2048 = Q1024 � Q2038 � g2(Q2045, Q1025).

This means that the equation contains the sequence variables Q1024, Q1025, Q2038,
Q2045, Q2048 and an entry of table P with unknown index. For each of these 6
variables, we have an average of 28 possible assignments. If we guess all of these
assignments, we obtain 248 possible candidates. Since only 1/232 of them satisfy
the equation, only 216 of them remain as valid states.

We proceed in the same way for round r = 5121, which requires variables
Q1025, Q1026, Q2039, Q2046, Q2049 and an entry of table P . Note that Q1025 is
already known from last round, meaning that we only have to guess 5 variables7.
7 Of course, there is also a possibility that the table entry for table P repeats itself, but

this probability is not very high in the first rounds. Should this happen by chance,
the attack becomes even more efficient.

Our search space increases to 216 ·240 = 256, then it collapses to 224 when filtering
out the assignments that don’t fulfil the equation.

Repeating the same step for round r = 5122 increases our search tree to
264, then collapsing it to 232. For round r = 5123, however, two of the required
variables are already known. This means that only 4 variables have to be guessed,
and the search tree expands to 264 and reduces itself to 232 after verification.

It continues to behave that way until round r = 5127. In this round, we need
three variables that have already been guessed before. This means that the tree
only expands to 256 candidates and then collapses back to 224. From now on,
the tree size will reduce itself with every round, until round r = 5130 when it
has size ≈ 1 after verification, i.e. only valid guesses remain. From now on, every
candidate guess can be verified right away.

Concluding, after running through rounds r = 5120, . . . , 6143, we have re-
constructed the correct solution for table entries Q1024, . . . , Q2047.

Reconstructing table P : Note that from the guesses above, a significant number
of entries for table P have already been reconstructed. There are numerous
possiblities for determining the remaining entries, such as:

– Running the same attack as above, using code line 3 instead of line 6. Note
that this requires extra cache timings to reduce the number of candidates
for P3072, . . . , P4095 to 28, each.

– Using code line 4 for rounds r = 5008, . . . , 5119. This code line requires only
two guesses from table P (with high probability at least one of them is known
anyway) and allows verification against the full 32-bit keystream word (16
bits of which have not yet been taken into account). This technique should
rapidly identify the missing entries for table P .

6 Consequences

6.1 Breaking the Cipher

Now, we have retrieved the full contents of tables P and Q at a fixed moment
(namely the beginning of round r = 6144). Given such a snapshot of both tables,
we can

– run the generator forwards to generate previously unknown keystream bits,
or

– run the generator backwards to retrieve the key (the state update function
and the key/IV setup are invertible).

Thus, the attack achieves the goal of breaking the security of HC-256.

6.2 Cost of the Attack

The main computational step is the backtracking attack, which requires less than
5 · 264 < 267 computational steps that consist in verifying the contents of one

equation. Since the key/IV setup of HC-256 has to compute the same equation
4096 = 212 times (plus does a number of other computations), the effort is
less than trying 255 keys in a brute-force setting. The memory requirements
are around 3 Megabytes for the candidate tables, plus some small amount of
memory for the search tree (implementing it in a depth-first search fashion keeps
the memory consumption low). In addition, we have assumed the availability of
precise cache measurements for 6148 chosen rounds.

We point out that our attack is not optimised in any way. It is likely that
it can be conducted with less cache measurements and with significantly less
computational effort.

Also note that if the attack is run on a processor with a different cache block
size, efficiency is influenced. For example, if the cache block size is only 32 byte
instead of 64 byte, the attacker learns 7 bit for each table lookup. In this case, no
backtracking phase is required at all – the solution can already be determined by
the reduction step described in Subsection 5.3. On the other hand, if the cache
block size is e.g. 128 byte, then only 5 bits for each table lookup are recovered,
and the backtracking gets a lot more difficult.

6.3 Security of the Cipher

However, the attack does not break HC-256 in the standard model. We have
used an attack model that would break AES-128 with only one cache timing
measurement and 264 trial encryptions. Thus, as long as we are not concerned
for the security of AES, we do not have to be concerned for the security of
HC-256.

Nonetheless, cache timing attacks are currently a real possibility in certain
scenarios. However, in order to obtain the cache access statistics as used by this
attack, several thousand or even million measurements are necessary. In the case
of the above attack on HC-256, these measurements have to be done under the
same IV 8. Thus, the attack would require the attacked system to repeatedly
encrypt under the same nonce, which in itself is a breach of the security contract
(unless the same plaintext is encrypted several times).

Thus, HC-256 can probably be considered secure for practical purposes. What
is more, the amount of work that is required to break HC-256 in an attacker-
friendly model as the one used in this paper can be used as an indication for
how hard it is to break HC-256 in a scenario where no side-channel information
is available.

6.4 Design Recommendations

While trying to break HC-256 (and doing initial analysis of other eStream candi-
dates), we met a number of obstacles that might be possible defense mechanisms
against cache timing attacks. Notably, the following design recommendations
may help preventing cache timing attacks:
8 It is not obvious how measurements under different IVs can be combined into one

attack.

1. Prevent the use of tables or S-boxes. If no table-based information is read
from RAM, then cache timing attacks become impossible.

2. If you have to use tables, make as many table accesses for one function call
as possible. Since the adversary can not see in which order table accesses are
made, this will make it more difficult for him to match the observed indices
to the inner state. For HC-256, this matching (Subsection 4.2) was relatively
easy, which made the attack possible in the first place.

3. Alternatively, make the inner state size large compared to the informa-
tion obtained from one cache measurement. In the case of HC-256, one
call to Next() yields 32 bit of keystream information and 52 bit of side-
channel information. Because of the large inner state, this means that at
least 65, 536/84 ≈ 780 precise cache access measurements (or many more
noisy ones) have to be made to retrieve the inner state.

4. Make use of the fact that the least significant bits of the cache block index
remain unknown (in our analysis, those were the 4 least significant bits).
This can be achieved by good state update and output generation functions
that generate a lot of diffusion without the use of S-boxes. As an example,
functions using carry (like addition and multiplication) are suitable for this
purpose.

5. As opposed to S-boxes, the variable tables used in HC-256 give the adversary
insecurity both about the input and the output of the tables. Again, this
makes life harder for the adversary than in the case of statical tables.

7 Conclusions

In this paper, we have described an abstract model of cache timing attacks that
can be used for designing ciphers. We demonstrated a cache timing attack against
HC-256 under this model, using certain strong assumptions that will most likely
prevent the attack from being feasible in practice. From the observations made
in our analysis, we derived a number of design principles for hardening ciphers
against cache timing attacks.

Open Issues: The following questions have not been answered by the paper and
could be starting points for further research:

– Optimisation of the attack. We believe that the cost for the attack – both
in terms of running time and of timing measurements – can be reduced by
a more careful analysis.

– Implementing the attack. All claims made in this paper are theoretical in
nature. No implementation has been made to verify the attack, neither in
the theoretical model nor using real cache timings.

– Fault induction attack. If we give the adversary the possibility of interrupting
a computation or introducing a fault (as might be the case when analysing,
e.g., smart card), much more efficient attacks (in particular against the key
and IV setup) might become possible9.

9 This idea is due to Stefan Lucks.

– Analysis of HC-128. The small version of HC-256 might be susceptible to
a similar attack. However, careful analysis is necessary to verify or disproof
this proposition.

– Analysis of other eStream candidates. Obviously, the remaining eStream
candidates should be analysed under the same conditions. While LEX will
display at least some of the weaknesses of AES, since it is based on that ci-
pher, applicability of cache timing attacks for Dragon, NLS, and Sosemanuk
is unclear.

Acknowledgements

The author wishes to thank Elke Piel and Ursula Zenner. Without their entirely
unacademical support, this paper could not have been written.

References

1. D. Bernstein. Cache Timing Attacks on AES.
http://cr.yp.to/papers.html#cachetiming. 2005.

2. J. Blömer and V. Krummel. Analysis of Countermeasures Against Access Driven
Cache Attacks on AES. In C. Adams, A. Miri, and M. Wiener, editors, Proc. SAC
2007, volume 4876 of LNCS, pages 96–109. Springer, 2007.

3. J. Bonneau and I. Mironov. Cache-Collision Timing Attacks Against AES. In L.
Goubin and M. Matsui, editors, Proc. CHES 2006, volume 4249 of LNCS, pages
201–215. Springer, 2006.

4. G. Bertoni, V. Zaccaria, L. Breveglieri, M. Monchiero, and G. Palermo. AES Power
Attack Based on Induced Cache Miss and Countermeasure. In International Sym-
posium on Information Technology: Coding and Computing (ITCC 2005), volume
1, pages 586–591. IEEE Computer Society, 2005.

5. eStream. ECRYPT stream cipher project.
http://www.ecrypt.eu.org/stream.

6. M. Neve, J. Seifert, Z. Wang. Cache Time-Behavior Analysis on AES.
http://www.cryptologie.be/document/Publications/AsiaCSS full 06.pdf. 2006.

7. D. Osvik, A. Shamir and E. Tromer. Cache Attacks and Countermeasures: The
Case of AES. In D. Pointcheval, editor, Proc. CT-RSA 2006, volume 3860 of LNCS,
pages 1–20. Springer, 2006.

8. H. Wu. A New Stream Cipher HC-256. In B. Roy and W. Meier, editors, Proc.
FSE 2004, volume 3017 of LNCS, pages 226–244. Springer, 2004.

9. H. Wu. The Stream Cipher HC-128.
http://www.ecrypt.eu.org/stream/hcp3.html. 2006.

