
Cache Timing Analysis of LFSR-based Stream Ciphers

Gregor Leander, Erik Zenner and Philip Hawkes

Technical University Denmark (DTU)
Department of Mathematics

e.zenner@mat.dtu.dk

Cirencester, Dec. 17, 2009

E. Zenner (DTU-MAT) Cache Timing Analysis Stream Ciphers Cirencester, Dec. 17, 2009 1 / 24



1 Cache Timing Attacks

2 Attack Model

3 Attacking LFSR-based Stream Ciphers

E. Zenner (DTU-MAT) Cache Timing Analysis Stream Ciphers Cirencester, Dec. 17, 2009 2 / 24



Cache Timing Attacks

Outline

1 Cache Timing Attacks

2 Attack Model

3 Attacking LFSR-based Stream Ciphers

E. Zenner (DTU-MAT) Cache Timing Analysis Stream Ciphers Cirencester, Dec. 17, 2009 3 / 24



Cache Timing Attacks

Cache Motivation

What is a CPU cache?

Intermediate memory between CPU and RAM

Stores data that was recently fetched from RAM

What is is good for?

Loading data from cache is much faster than loading data from RAM
(e.g. RAM access ≈ 50 cycles, cache access ≈ 3 cycles).

Data that is often used several times.

⇒ Keeping copies in cache reduces the average loading time.

Why is this a problem?

As opposed to RAM, cache is shared between users.

⇒ Cryptographic side-channel attack becomes possible.

E. Zenner (DTU-MAT) Cache Timing Analysis Stream Ciphers Cirencester, Dec. 17, 2009 4 / 24



Cache Timing Attacks

Cache Workings

Working principle (simplified): Let n be the cache size.
When we read from (or write to) RAM address a, proceed as follows:

Check whether requested data is at cache address (a mod n).

If not, load data into cache address (a mod n).

Load data item directly from cache.

E. Zenner (DTU-MAT) Cache Timing Analysis Stream Ciphers Cirencester, Dec. 17, 2009 5 / 24



Cache Timing Attacks

Cache Eviction (Simplified)

Problem: Cache is much smaller than RAM.

Consequence: Many RAM entries compete for the same place in cache.

Handling: New data overwrites old data (First in, first out).

E. Zenner (DTU-MAT) Cache Timing Analysis Stream Ciphers Cirencester, Dec. 17, 2009 6 / 24



Cache Timing Attacks

Sample Attack Setting

Starting point: Reading data is faster if it is in cache (cache hit), and
slower if it has to be loaded (cache miss).

Sample attack (prime-then-probe): Imagine two users A and B sharing
a CPU. If user A knows that user B is about to encrypt, he can proceed as
follows:

1 A fills all of the cache with his own data, then he stops working.

2 B does his encryption.

3 A measures loading times to find out which of his data have been
pushed out of the cache.

This way, A learns which cache addresses have been used by B.

E. Zenner (DTU-MAT) Cache Timing Analysis Stream Ciphers Cirencester, Dec. 17, 2009 7 / 24



Cache Timing Attacks

Example

1 Running a cache timing attack
gives the adversary a table with
this structure.

2 We can clearly see that B used
a table (e.g. S-Box,
lookup-table etc.).

3 We can also see which table
entries have been used.

Note: Adversary learns only the
table indices used by B, but not the
table contents!

E. Zenner (DTU-MAT) Cache Timing Analysis Stream Ciphers Cirencester, Dec. 17, 2009 8 / 24



Cache Timing Attacks

Example

1 Running a cache timing attack
gives the adversary a table with
this structure.

2 We can clearly see that B used
a table (e.g. S-Box,
lookup-table etc.).

3 We can also see which table
entries have been used.

Note: Adversary learns only the
table indices used by B, but not the
table contents!

E. Zenner (DTU-MAT) Cache Timing Analysis Stream Ciphers Cirencester, Dec. 17, 2009 8 / 24



Cache Timing Attacks

Practical Difficulties

For didactical reasons, we worked with a simplified cache model.

Real-world complexities include:

Cache data is not organised in bytes, but in blocks.
⇒ see next slides.

Other processes (e.g. system processes) use the cache, too.
⇒ We can not tell “encryption” cache accesses apart from others.

Timing noise disturbs the measurement.
⇒ Not all slow timings are due to cache misses.

Cache hierarchy is more complex.
⇒ Several layers of cache, several cache blocks for each memory
block.

Nonetheless, these difficulties can be overcome in practice [Bernstein 2005,
Osvik/Shamir/Tromer 2005, Bonneau/Mironov 2006].

E. Zenner (DTU-MAT) Cache Timing Analysis Stream Ciphers Cirencester, Dec. 17, 2009 9 / 24



Cache Timing Attacks

Improved Cache Model (1)

Extension of cache model: Data that is physically close to currently
used data will also more likely be used in the future (spatial proximity).
⇒ Keeping copies of physically close data in cache also reduces the
average loading time.

Real cache design:

Organise both cache and RAM into blocks of size s.

When loading a piece of data to cache, load the whole block that
surrounds it.

E. Zenner (DTU-MAT) Cache Timing Analysis Stream Ciphers Cirencester, Dec. 17, 2009 10 / 24



Cache Timing Attacks

Improved Cache Model (2)

⇒ We can only observe cache blocks that have been accessed, which is
not the same as table indices.

Example:

Pentium 4 L1-Cache holds 64 bytes per cache block.

Often, tables have entry sizes of 32 bits (4 bytes).

Each cache block holds 64/4 = 16 table entries.

⇒ If table entries are aligned with cache blocks, we can not say anything
about the 4 least significant bits of the table index!

This typically gives us a number of bits for some inner state words, but not
the lowest bits.

E. Zenner (DTU-MAT) Cache Timing Analysis Stream Ciphers Cirencester, Dec. 17, 2009 11 / 24



Attack Model

Outline

1 Cache Timing Attacks

2 Attack Model

3 Attacking LFSR-based Stream Ciphers

E. Zenner (DTU-MAT) Cache Timing Analysis Stream Ciphers Cirencester, Dec. 17, 2009 12 / 24



Attack Model

Attacking Algorithms vs. Implementations

Basically, side-channel attacks target the implementation, not the
algorithm.

Who is responsible - cryptographers or implementers?

⇒ Both!

Ideal: Cryptographers design algorithms that are not vulnerable to
side-channel attacks.

This saves all implementers the trouble of introducing protection
measures.

However: Cryptographers have to make assumptions (model) about
the target system.

E. Zenner (DTU-MAT) Cache Timing Analysis Stream Ciphers Cirencester, Dec. 17, 2009 13 / 24



Attack Model

Attacking Algorithms vs. Implementations

Basically, side-channel attacks target the implementation, not the
algorithm.

Who is responsible - cryptographers or implementers? ⇒ Both!

Ideal: Cryptographers design algorithms that are not vulnerable to
side-channel attacks.

This saves all implementers the trouble of introducing protection
measures.

However: Cryptographers have to make assumptions (model) about
the target system.

E. Zenner (DTU-MAT) Cache Timing Analysis Stream Ciphers Cirencester, Dec. 17, 2009 13 / 24



Attack Model

Assumptions for our Analysis

Available oracles:

Adversary can trigger key/IV setup with IV of his choice.
(standard)

Adversary can step through the stream cipher, one round at a time.
(standard)

Adversary can obtain any keystream block of his choice.
(standard)

Adversary can obtain any precise cache measurement of his choice.
(new!)

Limitations:

Adversary is limited to “realistic” number of keystream blocks.

Adversary is limited to small number of cache measurements.

Adversary is limited to “realistic” computational resources.

E. Zenner (DTU-MAT) Cache Timing Analysis Stream Ciphers Cirencester, Dec. 17, 2009 14 / 24



Attacking LFSR-based Stream Ciphers

Outline

1 Cache Timing Attacks

2 Attack Model

3 Attacking LFSR-based Stream Ciphers

E. Zenner (DTU-MAT) Cache Timing Analysis Stream Ciphers Cirencester, Dec. 17, 2009 15 / 24



Attacking LFSR-based Stream Ciphers

A New Target

Known cache-timing attacks:

... against S-boxes (e.g. AES and many others)

... against rolling arrays (e.g. RC4, HC-256)

New target:

... LFSR lookup tables (e.g. Snow, Sosemanuk)

E. Zenner (DTU-MAT) Cache Timing Analysis Stream Ciphers Cirencester, Dec. 17, 2009 16 / 24



Attacking LFSR-based Stream Ciphers

Sample Cipher: Snow 2.0

Three components (1 word = 32 bits):

LFSR: 16 words

NL state: 2 words

Output: 1 word / round

E. Zenner (DTU-MAT) Cache Timing Analysis Stream Ciphers Cirencester, Dec. 17, 2009 17 / 24



Attacking LFSR-based Stream Ciphers

Step 1: Cache-timing phase

Target the multiplications in the LFSR update:

Multiplications are implemented using 8× 32-bit lookup tables T1

and T2:

x · a =
(
(x � 8)⊕ T1[x (24..31)]

)
y · b =

(
(y � 8)⊕ T2[y (0..7)]

)
Ideally, we observe one access each to T1 and T2, yielding some
information about x and y .

Repeat until we have slightly more than 16 · 32 = 512 inner state bits.

Effort:

If each table access gives the b uppermost bits of the table index:
We need 512/2b rounds of precise cache timing measurements.

E. Zenner (DTU-MAT) Cache Timing Analysis Stream Ciphers Cirencester, Dec. 17, 2009 18 / 24



Attacking LFSR-based Stream Ciphers

Step 2: Reconstructing the LFSR state

Fact 1: An LFSR consisting of w elements in F2m can equivalently be
written as an LFSR consisting of wm elements in F2.

Fact 2: Given an L-bit LFSR and L + δ arbitrary inner state bits, the
initial state can be reconstructed efficiently by solving a system of linear
equations.

Combining fact 1 and 2:

Observing ≈ 512 arbitrary state bits allows reconstruction of LFSR
initial state.

Knowing initial state allows reconstruction of any LFSR state bit.

Effort:

1 Representing 512 state bits as lin. comb. of the initial state bits.

2 Solving an equation system in F2 with 512 variables.

E. Zenner (DTU-MAT) Cache Timing Analysis Stream Ciphers Cirencester, Dec. 17, 2009 19 / 24



Attacking LFSR-based Stream Ciphers

Step 3: Reconstructing the NL state

Status:

Attacker knows full LFSR sequence.

Attacker also knows keystream sequence.

Unknown: 2 words of NL state (64 bits in total).

Attack:

Attacker guesses first NL word (32 bit).

Uses knowledge about LFSR and output sequence.

⇒ Easy to determine second NL word arithmetically.

Effort:

232 guess-and-determine steps.

E. Zenner (DTU-MAT) Cache Timing Analysis Stream Ciphers Cirencester, Dec. 17, 2009 20 / 24



Attacking LFSR-based Stream Ciphers

Sosemanuk: Additional Problems

Other ciphers:

Sober, Turing are even easier.

Sosemanuk produces one 128-bit output block from 4 NL words.
⇒ more difficult

This gives additional problems:

Problem 1: Every measurement shows 4 table accesses.
⇒ Unknown ordering!

Instead of using individual bits, use sum of 4 bits.

Problem 2: With Pr ≈ 1/3, a cache line is used twice.
⇒ We don’t know which!

Possible: Guess which access occurs twice.
Better: Discard measurement.

E. Zenner (DTU-MAT) Cache Timing Analysis Stream Ciphers Cirencester, Dec. 17, 2009 21 / 24



Attacking LFSR-based Stream Ciphers

Attack Overview

Attack parameters against target stream ciphers:

LFSR Guess # Cache Measurements Known
size Steps General Pentium 4 output

Sosemanuk 320 232 160/b clks 40 clks 16 bytes
Snow 2.0 512 232 256/b clks 64 clks 8 bytes
Sober-128 544 - 544/b clks 136 clks 4 bytes
Turing 544 - 544/b clks 136 clks -

⇒ Given precise measurements, the attacks work within seconds on a PC.

E. Zenner (DTU-MAT) Cache Timing Analysis Stream Ciphers Cirencester, Dec. 17, 2009 22 / 24



Attacking LFSR-based Stream Ciphers

Practical Relevance

However: Attacks require precise cache timing measurements.

What does that mean?

We assume measurements to be noise-free, identifying exactly the
correct table index.

In practice:

We usually obtain a set of candidates for the table index.
Repeat experiment (same key/IV pair) to narrow down candidate set.
Try above attack for all remaining candidate combinations.

Whether this is feasible or not depends on the target platform.

Rule of thumb:
The “cleaner” the target platform, the more likely the attack.

E. Zenner (DTU-MAT) Cache Timing Analysis Stream Ciphers Cirencester, Dec. 17, 2009 23 / 24



Attacking LFSR-based Stream Ciphers

Thank you for your attention!

Questions? Comments?

E. Zenner (DTU-MAT) Cache Timing Analysis Stream Ciphers Cirencester, Dec. 17, 2009 24 / 24


	Cache Timing Attacks
	Attack Model
	Attacking LFSR-based Stream Ciphers

