Cache Timing Analysis of eStream Finalists

Erik Zenner

Technical University Denmark (DTU)
Department of Mathematics
e.zenner@mat.dtu.dk

Dagstuhl, Jan. 15, 2009

Erik Zenner (DTU-MAT) Cache Timing Analysis eStream Finalists Dagstuhl, Jan. 15, 2009

@ Cache Timing Attacks

© Attack Model

© Analysing eStream Finalists

@ Conclusions and Observations

Erik Zenner (DTU-MAT) Cache Timing Analysis eStream Finalists

Dagstuhl, Jan. 15, 2009

2/ 24

Cache Timing Attacks

Outline

@ Cache Timing Attacks

Erik Zenner (DTU-M iming Analysis eStream Finalists Dagstuhl, Jan. 1

Cache Timing Attacks
Cache Motivation

What is a CPU cache?

o Intermediate memory between CPU and RAM
o Stores data that was recently fetched from RAM

What is is good for?

o Loading data from cache is much faster than loading data from RAM
(e.g. RAM access ~ 50 cycles, cache access ~ 3 cycles).

@ Data that is often used several times.

o = Keeping copies in cache reduces the average loading time.

Why is this a problem?
@ As opposed to RAM, cache is shared between users.

o = Cryptographic side-channel attack becomes possible.

Erik Zenner (DTU-MAT) Cache Timing Analysis eStream Finalists Dagstuhl, Jan. 15, 2009 4 /24

Cache Timing Attacks
Cache Workings

Working principle (simplified): Let n be the cache size.
When we read from (or write to) RAM address a, proceed as follows:

o Check whether requested data is at cache address (a mod n).
o If not, load data into cache address (a mod n).

o Load data item directly from cache.

Address Cache RAM

0

~ s

n-1

Erik Zenner (DTU-MAT) Cache Timing Analysis eStream Finalists Dagstuhl, Jan. 15, 2009

Cache Timing Attacks

Cache Eviction (Simplified)

Problem: Cache is much smaller than RAM.

Consequence: Many RAM entries compete for the same place in cache

Address Cache RAM

0

[NN

_\ /’

n-1

Handling: New data overwrites old data (First in, first out).

Erik Zenner (DTU-MAT) Cache Timing Analysis eStream Finalists Dagstuhl, Jan. 15, 2009

6 /24

Cache Timing Attacks
Sample Attack Setting

Starting point: Reading data is faster if it is in cache (cache hit), and
slower if it has to be loaded (cache miss).

Sample attack (prime-then-probe): Imagine two users A and B sharing
a CPU. If user A knows that user B is about to encrypt, he can proceed as
follows:
Q@ A fills all of the cache with his own data, then he stops working.
©Q B does his encryption.
© A measures loading times to find out which of his data have been
pushed out of the cache.

This way, A learns which cache addresses have been used by B.

Erik Zenner (DTU-MAT) Cache Timing Analysis eStream Finalists Dagstuhl, Jan. 15, 2009 7/ 24

Cache Timing Attacks

Example

Cache used

0x000 @ Running a cache timing attack
gives the adversary a table with
this structure.

—

OXFFF

Erik Zenner (DTU-MAT) Cache Timing Analysis eStream Finalists Dagstuhl, Jan. 15, 2009 8 /24

Cache Timing Attacks
Example

0x000

OXFFF

Cache used

—

@ Running a cache timing attack
gives the adversary a table with
this structure.

Q@ We can clearly see that B used
a table (e.g. S-Box,
lookup-table etc.).

@ We can also see which table
entries have been used.

Note: Adversary learns only the
table indices used by B, but not the
table contents!

Erik Zenner (DTU-MAT)

Cache Timing Analysis eStream Finalists Dagstuhl, Jan. 15, 2009 8 /24

Cache Timing Attacks
Practical Difficulties

For didactical reasons, we worked with a simplified cache model.

Real-world complexities include:

o Cache data is not organised in bytes, but in blocks.
= We do not learn the exact index, but only some index bits.

o Other processes (e.g. system processes) use the cache, too.
= We can not tell “encryption” cache accesses apart from others.

@ Timing noise disturbs the measurement.
= Not all slow timings are due to cache misses.

o Cache hierarchy is more complex.
= Several layers of cache, several cache blocks for each memory
block.

Nonetheless, these difficulties can often be overcome in practice (Bernstein
2005, Osvik/Shamir/Tromer 2005, Bonneau/Mironov 2006).

Erik Zenner (DTU-MAT) Cache Timing Analysis eStream Finalists Dagstuhl, Jan. 15, 2009 9 /24

Attack Model

Outline

© Attack Model

Erik Zenner (DTU-M iming Analysis eStream Finalists Dagstuhl, Jan. 15, 2

Attack Model
Attacking Algorithms vs. Implementations

Basically, side-channel attacks target the implementation, not the

algorithm.

Who is responsible - cryptographers or implementers?

Dagstuhl, Jan. 15, 2009 11 /24

Erik Zenner (DTU-MAT) Cache Timing Analysis eStream Finalists

Attack Model
Attacking Algorithms vs. Implementations

Basically, side-channel attacks target the implementation, not the
algorithm.

Who is responsible - cryptographers or implementers? = Both!

o Ideal: Cryptographers design algorithms that are not vulnerable to
side-channel attacks.

@ This saves all implementers the trouble of introducing protection
measures.

o However: Cryptographers have to make assumptions (model) about
the target system.

Dagstuhl, Jan. 15, 2009 11 /24

Erik Zenner (DTU-MAT) Cache Timing Analysis eStream Finalists

Attack Model
Assumptions for our Cryptanalysis

Available oracles:
o Adversary can trigger key/IV setup with IV of his choice.

@ Adversary can step through the stream cipher, one round at a time
(Osvik et al.: "synchronous” attack)

Adversary can obtain any keystream block of his choice.

Adversary can obtain any precise cache measurement of his choice.
(new!)
Limitations:

o Adversary is limited to “realistic” number of keystream blocks.

o Adversary is limited to small number of cache measurements.

@ Adversary is limited to “realistic” computational resources.

Erik Zenner (DTU-MAT) Cache Timing Analysis eStream Finalists Dagstuhl, Jan. 15, 2009

Analysing eStream Finalists

Outline

© Analysing eStream Finalists

Erik Zenner (DTU-MA Timing Analysis eStream Finalists Dagstuhl, Jan. 15, 20

Analysing eStream Finalists
What is eStream?

Project: eStream was a subproject of the European ECRYPT project
(2004-2008).
Purpose: Advance the understanding of stream ciphers and propose a
portfolio of recommended algorithms.
Brief history:

@ 2004 (Fall): Call for contributions.
2005 (Spring): Submission of 34 stream ciphers for evaluation.

2006 (Spring): End of evaluation phase 1, reduction to 27 candidates.

2007 (Spring): End of evaluation phase 2, reduction to 16 finalists.
2008 (April 15): Announcement of the final portfolio of 8 ciphers.

@ 2008 (Sept. 8): Reduction to 7 ciphers due to new cryptanalysis.

Portfolio (Software): HC-128, Rabbit, Salsa20/12, Sosemanuk
Portfolio (Hardware): Grain, MICKEY (v2), Trivium

Erik Zenner (DTU-MAT) Cache Timing Analysis eStream Finalists Dagstuhl, Jan. 15, 2009 14 / 24

Analysing eStream Finalists
eStream Software Finalists

| Cipher | Tables | Relevant |

CryptMT none -
Dragon Two 8 x 32-bit S-Boxes T
HC-128 Two 512 x 32-bit tables
HC-256 Two 1024 x 32-bit tables T
LEX-128 One 8 X 8-bit S-Box (ref. code)

Eight 8 x 32-bit S-Boxes (opt. code) T
NLS One 8 x 32-bit S-Box T
Rabbit none -
Salsa-20 none -
Sosemanuk | One 8 x 32-bit table,

eight 4 x 4-bit S-Boxes (ref. code) T

1. Uses tables, thus potentially vulnerable

Erik Zenner (DTU-MAT) Cache Timing Analysis eStream Finalists Dagstuhl, Jan. 15, 2009 15 / 24

Analysing eStream Finalists
Dragon

Table use:
Dragon uses two 8 x 32-bit S-Boxes.

o Each S-Box fills 16 cache blocks (Pentium 4).
o For each round, each S-box is called 12 times.

o For each S-Box, up to 12 out of 16 cache blocks are accessed (on
average: 8.6).
= Less information than we hoped for.

@ It is unclear in which order those cache blocks were accessed. If a full
12 different blocks were accessed for both S-boxes, there would be
2577 possible ways of ordering them.

Status:
Not fully analysed yet.

Erik Zenner (DTU-MAT) Cache Timing Analysis eStream Finalists Dagstuhl, Jan. 15, 2009 16 / 24

Analysing eStream Finalists
HC-256

Table use:
Two 1024 x 32-bit tables.

@ Main problem: huge inner state.
o Attack at SAC 2008:

Computation time: equivalent to 2% key setups.
Memory requirement: 3 MByte

Known keystream: 8 kByte

Precise cache measurements: 6148 rounds

Status:
Theoretically broken, but not relevant in practice.

Erik Zenner (DTU-MAT) Cache Timing Analysis eStream Finalists Dagstuhl, Jan. 15, 2009

Analysing eStream Finalists
HC-128

Table use:
Two 512 x 32-bit tables.

@ Surprisingly big changes compared to HC-256.
@ Very relevant for the cache timing attack.
@ Attack from SAC 2008 can not be transferred.

Status:
Not fully analysed yet.

Erik Zenner (DTU-MAT) Cache Timing Analysis eStream Finalists Dagstuhl, Jan. 15, 2009 18 / 24

Analysing eStream Finalists
LEX-128

Table use:
Eight 8 x 32-bit S-Boxes (optimised code).

o Based on AES.

o Similar attacks applicable, both against key/IV setup and against
keystream generation.

o Known protection measures (smaller S-boxes, bitslice implementation)
applicable.

Status:
Optimised implementation breakable in practice. Protection measures have

to be applied.

19 / 24

Erik Zenner (DTU-MAT) Cache Timing Analysis eStream Finalists Dagstuhl, Jan. 15, 2009

Analysing eStream Finalists
NLS v2

Table use:
One 8 x 32-bit S-Box.

o Work submitted for publication (Joint work with Gregor Leander).
o Attack retrieves the uppermost byte of each inner state word:
Computation time: 2% guess-and-determine steps.

Memory requirement: negligible

Known keystream: 23 upper bytes

Precise cache measurements: 26 rounds

@ Not obvious how to retrieve the lowermost bytes
(S-box removed, but need to solve AXR system)

Status:
Theoretical weakness which does not seem to lead to a practical vulnerability.

Erik Zenner (DTU-MAT) Cache Timing Analysis eStream Finalists Dagstuhl, Jan. 15, 2009 20 / 24

Analysing eStream Finalists
Sosemanuk (1)

Table use:

One 8 x 32-bit table to speed up computations in GF(232),
some implementations also eight 4 x 4-bit S-Boxes (not used for analysis)

o Work submitted for publication (Joint work with Gregor Leander).
o Attack targets LFSR:

o Any (cache timing) information about the inner state can be
incorporated into linear equation system.

o Ordering problem (— Dragon) can be solved by using slightly more
measurements.

o Retrieving of LFSR state (320 bit) by solving linear equation system.

o Retrieving the nonlinear state (64 bit) by 232 guessing steps.

Erik Zenner (DTU-MAT) Cache Timing Analysis eStream Finalists Dagstuhl, Jan. 15, 2009 21 /24

Analysing eStream Finalists

Sosemanuk (2)

o Attack parameters:

o Computation time: 232 guess-and-determine steps,
+ solving a linear equation system with 320 unknowns in GF(2).
o Memory requirement: 12.5 kByte (eq. system)
o Known keystream: 1 output block (16 bytes)
o Precise cache measurements: 20-40 rounds
(depending on cache block size)

o Attack applies to all current designs with LFSRs over GF(232):
Snow, Sober, Turing,...
Status:

Practical break of Sosemanuk, Snow, Sober, Turing.
Protection of the implementation necessary.

Erik Zenner (DTU-MAT) Cache Timing Analysis eStream Finalists Dagstuhl, Jan. 15, 2009 22 /24

Conclusions and Observations

Outline

@ Conclusions and Observations

Erik Zenner (DTU-MAT) Cache Timing Analysis eStream Finalists Dagstuhl, Jan. 15, 2

Conclusions and Observations
Conclusions and Observations

o LFSR-based solutions (over large fields) very vulnerable due to
combination of lookup-table and linearity.

@ Most other stream ciphers surprisingly resistant against cache timing
attacks:
o Given significant information about the inner state, we still can’t break
them efficiently!
o Overdesigned for normal purposes?
o Significant speed-up possible if we drop some of the more extreme
security requirements?

@ Toolbox for cryptanalysis pretty empty:

o Most analysis methods require huge amounts of data and
computational resources (correlation attacks, non-trivial algebraic
attacks, BDD attacks, distinguishers based on small biases etc.).

o Efficient tools: guess-and-determine, solving linear equations, others?

o Tools for solving AXR problem (— Ralf-Philipp’s talk) would come in
handy!

Erik Zenner (DTU-MAT) Cache Timing Analysis eStream Finalists Dagstuhl, Jan. 15, 2009 24 / 24

	Cache Timing Attacks
	Attack Model
	Analysing eStream Finalists
	Conclusions and Observations

